Advertisement
Review Article| Volume 154, P108-116, February 2023

A systematic scoping review of just-in-time, adaptive interventions finds limited automation and incomplete reporting

  • Theodora Oikonomidi
    Correspondence
    Corresponding author. Centre d’Epidémiologie Clinique, INSERM U1153, Hôpital Hôtel-Dieu, 1 place du Parvis Notre Dame, 75004 Paris, France. Tel.: 01 42 34 89 87; fax: 01 42 34 89 87.
    Affiliations
    Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France

    Clinical Epidemiology Unit, Hôtel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP), 75004 Paris, France
    Search for articles by this author
  • Philippe Ravaud
    Affiliations
    Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France

    Clinical Epidemiology Unit, Hôtel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP), 75004 Paris, France

    Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
    Search for articles by this author
  • Jonathan LeBeau
    Affiliations
    Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France

    Clinical Epidemiology Unit, Hôtel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP), 75004 Paris, France
    Search for articles by this author
  • Viet-Thi Tran
    Affiliations
    Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France

    Clinical Epidemiology Unit, Hôtel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP), 75004 Paris, France
    Search for articles by this author
Published:December 12, 2022DOI:https://doi.org/10.1016/j.jclinepi.2022.12.006

      Abstract

      Objectives

      To describe the degree of automation in just-in-time, adaptive interventions (JITAIs) assessed in randomized controlled trials (RCTs) in any medical specialty, and to assess the completeness of intervention reporting.

      Study Design and Setting

      Systematic scoping review—we searched PubMed, PsycINFO, and Web of Science, from 1 January 2019 to 2 March 2021, for reports of RCTs assessing JITAIs. We assessed whether study reports included the minimum information required to replicate the interventions based on JITAI frameworks. We described JITAIs according to their automation level using an established framework (partially, highly, or fully automated), and care workload distribution (requiring work from patients, health care professionals [HCPs], both, or neither).

      Results

      We included 88 JITAIs (62%, n = 55 supported chronic illness management and 12%, n = 11 supported health behavior change). Overall, 77% (n = 68) of JITAIs were missing some information required to replicate the intervention (e.g., n = 38, 43% inadequately reported the algorithm used to select intervention components). Only fifteen (17%) JITAIs were fully automated and did not require additional work from HCPs nor patients. Of the remaining JITAIs, 36% required work from both patients and HCPs, and 47% required work from either patients or HCPs.

      Conclusion

      Most JITAIs are not fully automated and require work from the HCPs and patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Epidemiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Collins L.M.
        • Murphy S.A.
        • Bierman K.L.
        A conceptual framework for adaptive preventive interventions.
        Prev Sci. 2004; 5: 185-196
        • Nahum-Shani I.
        • Smith S.N.
        • Spring B.J.
        • Collins L.M.
        • Witkiewitz K.
        • Tewari A.
        • et al.
        Just-in-Time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support.
        Ann Behav Med. 2018; 52: 446-462
        • Waugh N.
        • Adler A.
        • Craigie I.
        • Omer T.
        Closed loop systems in type 1 diabetes.
        BMJ. 2018; 361: k1613
        • Hébert E.T.
        • Ra C.K.
        • Alexander A.C.
        • Helt A.
        • Moisiuc R.
        • Kendzor D.E.
        • et al.
        A mobile just-in-time adaptive intervention for smoking cessation: pilot randomized controlled trial.
        J Med Internet Res. 2020; 22
        • Topol E.J.
        High-performance medicine: the convergence of human and artificial intelligence.
        Nat Med. 2019; 25: 44-56
        • Gönül S.
        • Namlı T.
        • Coşar A.
        • Toroslu İ.H.
        A reinforcement learning based algorithm for personalization of digital, just-in-time, adaptive interventions.
        Artif Intell Med. 2021; 115: 102062
        • Nahum-Shani I.
        • Dziak J.J.
        • Walton M.A.
        • Dempsey W.
        Hybrid experimental designs for intervention development: what, why, and how.
        Adv Methods Practices Psychol Sci. 2022; 5 (25152459221114280)
        • Hardeman W.
        • Houghton J.
        • Lane K.
        • Jones A.
        • Naughton F.
        A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity.
        Int J Behav Nutr Phys Act. 2019; 16: 31
        • Perski O.
        • Hébert E.T.
        • Naughton F.
        • Hekler E.B.
        • Brown J.
        • Businelle M.S.
        Technology-mediated just-in-time adaptive interventions (JITAIs) to reduce harmful substance use: a systematic review.
        Addiction. 2021; 117: 1220-1241
        • Schembre S.M.
        • Liao Y.
        • Robertson M.C.
        • Dunton G.F.
        • Kerr J.
        • Haffey M.E.
        • et al.
        Just-in-Time feedback in diet and physical activity interventions: systematic review and practical design framework.
        J Med Internet Res. 2018; 20: e106
        • Wang L.
        • Miller L.C.
        Just-in-the-Moment adaptive interventions (JITAI): a meta-analytical review.
        Health Commun. 2020; 35: 1531-1544
      1. PROSPERO: international prospective register of systematic reviews.
        (Available at)
        https://www.crd.york.ac.uk/PROSPERO/
        Date accessed: September 3, 2022
        • McAuley S.A.
        • Lee M.H.
        • Paldus B.
        • Vogrin S.
        • de Bock M.I.
        • Abraham M.B.
        • et al.
        Six months of hybrid closed-loop versus manual insulin delivery with fingerprick blood glucose monitoring in adults with type 1 diabetes: a randomized, controlled trial.
        Diabetes Care. 2020; 43: 3024-3033
        • Malmartel A.
        • Ravaud P.
        • Ghosn L.
        • Tran V.T.
        A classification of methods used to personalize participative interventions revealed inadequate reporting in trial protocols.
        J Clin Epidemiol. 2021; 133: 80-93
        • Hoffmann T.C.
        • Glasziou P.P.
        • Boutron I.
        • Milne R.
        • Perera R.
        • Moher D.
        • et al.
        Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide.
        BMJ. 2014; 348: g1687
        • Boutron I.
        • Moher D.
        • Altman D.G.
        • Schulz K.F.
        • Ravaud P.
        • CONSORT Group
        Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration.
        Ann Intern Med. 2008; 148: 295-309
        • Marko K.I.
        • Ganju N.
        • Krapf J.M.
        • Gaba N.D.
        • Brown J.A.
        • Benham J.J.
        • et al.
        A mobile prenatal care app to reduce in-person visits: prospective controlled trial.
        JMIR Mhealth Uhealth. 2019; 7: e10520
        • Lynch B.M.
        • Nguyen N.H.
        • Moore M.M.
        • Reeves M.M.
        • Rosenberg D.E.
        • Boyle T.
        • et al.
        A randomized controlled trial of a wearable technology-based intervention for increasing moderate to vigorous physical activity and reducing sedentary behavior in breast cancer survivors: the ACTIVATE Trial.
        Cancer. 2019; 125: 2846-2855
        • Singh L.G.
        • Satyarengga M.
        • Marcano I.
        • Scott W.H.
        • Pinault L.F.
        • Feng Z.
        • et al.
        Reducing inpatient hypoglycemia in the general wards using real-time continuous glucose monitoring: the glucose telemetry system, a randomized clinical trial.
        Diabetes Care. 2020; 43: 2736-2743
        • Horbach T.
        • Meyer G.
        • Morales-Conde S.
        • Alarcón I.
        • Favretti F.
        • Anselmino M.
        • et al.
        Closed-loop gastric electrical stimulation versus laparoscopic adjustable gastric band for the treatment of obesity: a randomized 12-month multicenter study.
        Int J Obes (Lond). 2016; 40: 1891-1898
        • R Core Team
        R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
        (Available at)
        http://www.R-project.org/
        Date: 2013
        Date accessed: September 3, 2022
        • Mehta S.J.
        • Hume E.
        • Troxel A.B.
        • Reitz C.
        • Norton L.
        • Lacko H.
        • et al.
        Effect of remote monitoring on discharge to home, return to activity, and rehospitalization after hip and knee arthroplasty: a randomized clinical trial.
        JAMA Netw Open. 2020; 3: e2028328
        • Bosi E.
        • Choudhary P.
        • Valk H.W.
        • Lablanche S.
        • Castañeda J.
        • de Portu S.
        • et al.
        Efficacy and safety of suspend-before-low insulin pump technology in hypoglycaemia-prone adults with type 1 diabetes (SMILE): an open-label randomised controlled trial.
        Lancet Diabetes Endocrinol. 2019; 7: 462-472
        • Ionov M.V.
        • Zhukova O.V.
        • Yudina Y.S.
        • Avdonina N.G.
        • Emelyanov I.V.
        • Kurapeev D.I.
        • et al.
        Value-based approach to blood pressure telemonitoring and remote counseling in hypertensive patients.
        Blood Press. 2021; 30: 20-30
        • Dugas M.
        • Gao G.G.
        • Agarwal R.
        Unpacking mHealth interventions: a systematic review of behavior change techniques used in randomized controlled trials assessing mHealth effectiveness.
        Digit Health. 2020; 6 (2055207620905411)
        • Teepe G.W.
        • Da Fonseca A.
        • Kleim B.
        • Jacobson N.C.
        • Sanabria A.S.
        • Car L.T.
        • et al.
        Just-in-time adaptive mechanisms of popular mobile apps for individuals with depression: systematic app search and literature review.
        J Med Internet Res. 2021; 23: e29412
        • Asch D.A.
        • Muller R.W.
        • Volpp K.G.
        Automated hovering in health care — watching over the 5000 hours.
        N Engl J Med. 2012; 367: 1-3
        • Oikonomidi T.
        • Ravaud P.
        • James A.
        • Cosson E.
        • Montori V.
        • Tran V.T.
        An international, mixed-methods study of the perceived intrusiveness of remote digital diabetes monitoring.
        Mayo Clin Proc. 2021; 96: 1236-1247