Advertisement

Regulatory agencies disregard real-world effectiveness evidence on product labels beyond what is reasonable

  • Rafael Dal-Ré
    Correspondence
    Corresponding author. Unidad de Epidemiología, Instituto de Investigación Sanitaria-Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avda. Reyes Católicos 2, E-28040 Madrid, Spain. Tel.: +34 649 410 221; fax: +34 914 974 083.
    Affiliations
    Epidemiology Unit, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
    Search for articles by this author
  • Raphaël Porcher
    Affiliations
    Université de Paris, Centre of Research in Epidemiology and Statistics (CRESS-UMR1153), Institut National de la Santé et de la Recherche Médicale, Paris, France
    Search for articles by this author
  • Frits R. Rosendaal
    Affiliations
    Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
    Search for articles by this author
  • Brigitte Schwarzer-Daum
    Affiliations
    Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
    Search for articles by this author
Published:November 09, 2022DOI:https://doi.org/10.1016/j.jclinepi.2022.11.007
      Medicines product labels are perceived as reliable source of information for healthcare professionals.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Epidemiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • European Commission
        Notice to applicants. A guideline on summary of product characteristics (SmPC).
        (Available at)
        • Code of Federal Regulations
        21 CFR 201.56 Requirements on content and format of labeling for human prescription drug and biological products.
        (Available at)
        • Zhang A.D.
        • Puthumana J.
        • Downing N.S.
        • Shah N.D.
        • Krumholz H.K.
        • Ross J.S.
        Assessment of clinical trials supporting US Food and drug administration approval of novel therapeutic agents, 1995-2017.
        JAMA Netw Open. 2020; 3: e203284
        • Morant A.V.
        • Vestergaard H.T.
        European marketing authorizations granted based on a single pivotal clinical trial: the rule or the exception?.
        Clin Pharmacol Ther. 2018; 104: 169-177
        • Djulbegovic B.
        • Glasziou P.
        • Klocksieben F.A.
        • Reljic T.
        • Van Den Bergh M.
        • Mhaskar R.
        • et al.
        Larger effect sizes in non-randomised studies are associated with higher rates of EMA licensing approval.
        J Clin Epidemiol. 2018; 98: 24-32
        • Razavi M.
        • Glasziou P.
        • Klocksieben F.A.
        • Ioannidis J.P.A.
        • Chalmers I.
        • Djulbegovic B.
        US Food and drug administration approvals of drugs and devices based on nonrandomized clinical trials: a systematic review and meta-analysis.
        JAMA Netw Open. 2019; 2: e1911111
        • Moshkovits I.
        • Shepshelovisch D.
        Emergency use authorizations of COVID-19-related medical products.
        JAMA Intern Med. 2021; 182: 228-229
        • Brown J.P.
        • Wing K.
        • Evans S.J.
        • Bhaskaran K.
        • Smeeth L.
        • Douglas I.J.
        Use of real-world evidence in postmarketing medicines regulation in the European Union: a systematic assessment of European Medicines Agency referrals 2013–2017.
        BMJ Open. 2019; 9: e028133
        • Alves C.
        • Macedo A.F.
        • Marques F.B.
        Sources of information used by regulatory agencies on the generation of drug safety alerts.
        Eur J Clin Pharmacol. 2013; 69: 2083-2094
        • Lane S.
        • Lynn E.
        • Shakir S.
        Investigation assessing the publicly available evidence supporting postmarketing withdrawals, revocations and suspensions of marketing authorisations in the EU since 2012.
        BMJ Open. 2018; 8: e019759
        • Babai S.
        • Auclert L.
        • Le-Louët H.
        Safety data and withdrawal of hepatotoxic drugs.
        Therapie. 2021; 76: 715-723
        • Pickering L.K.
        • Meissner H.C.
        • Orenstein W.A.
        • Cohn A.C.
        Principles of vaccine licensure, approval, and recommendations for use.
        Mayo Clin Proc. 2020; 95: 600-608
        • Dal-Ré R.
        • Launay O.
        Public trust on regulatory decisions: the European Medicines Agency and the AstraZeneca COVID-19 vaccine label.
        Vaccine. 2021; 39: 4029-4031
        • Egilman A.
        • Wallach J.D.
        • Puthumana J.
        • Zhang A.D.
        • Schwartz J.L.
        • Ross J.S.
        Characteristics of preapproval and postapproval studies of vaccines granted accelerated approval by the US Food and drug administration.
        J Gen Intern Med. 2021; 36: 3281-3284
        • Tau N.
        • Yahav D.
        • Shepshelovich D.
        Postmarketing safety of vaccines approved by the U.S. Food and drug administration: a cohort study.
        Ann Intern Med. 2020; 173: 445-449
        • Delage G.
        Rotavirus vaccine withdrawal in the United States: the role of postmarketing surveillance.
        Can J Infect Dis. 2000; 11: 10-12
        • Cave A.
        • Kurz X.
        • Arlett P.
        Real-world data for regulatory decision making: challenges and possible solutions for Europe.
        Clin Pharmacol Ther. 2019; 106: 36-39
        • European Medicines Agency
        Comirnaty. Tozinameran/COVID-19 mRNA Vaccine (nucleoside modified).
        (Available at)
        • US Food and Drug Administration
        Comirnaty. Package insert. Revised December.
        (Available at)
        https://www.fda.gov/media/151707/download
        Date: 2021
        Date accessed: January 8, 2022
        • Thompson M.G.
        • Stenehjem E.
        • Grannis S.
        • Ball S.W.
        • Naleway A.L.
        • Ong T.C.
        Effectiveness of Covid-19 vaccines in ambulatory and inpatient care settings.
        Engl J Med. 2021; 385: 1355-1371
        • Pilishvili T.
        • Gierke R.
        • Fleming-Dutra K.E.
        • Farrar J.L.
        • Mohr N.M.
        • Talan D.A.
        • et al.
        Effectiveness of mRNA covid-19 vaccine among U.S. Health care personnel.
        N Engl J Med. 2021; 385: e90
        • Haas E.J.
        • Angulo F.J.
        • McLaughlin J.M.
        • Anis E.
        • Singer S.R.
        • Khan F.
        • et al.
        Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data.
        Lancet. 2021; 397: 1819-1829
        • Cabeza C.
        • Coma E.
        • Mora-Fernández N.
        • Li X.
        • Martínez-Marcos M.
        • Fina F.
        • et al.
        Associations of BNT162b2 vaccination with SARS-CoV-2 infection and hospital admission and death with covid-19 in nursing homes and healthcare workers in Catalonia: prospective cohort study.
        BMJ. 2021; 374: n1868
        • Collie S.
        • Champion J.
        • Moultrie H.
        • Bekker L.G.
        • Gray G.
        Effectiveness of BNT162b2 vaccine against omicron variant in South Africa.
        N Engl J Med. 2022; 386: 494-496
        • Botton J.
        • Dray-Spira R.
        • Baricault B.
        • Drouin J.
        • Bertrand M.
        • Jabagi M.J.
        • et al.
        Reduced risk of severe COVID-19 in more than 1.4 million elderly people aged 75 years and older vaccinated with mRNA-based vaccines.
        Vaccine. 2022; 40: 414-417
        • Bouillon K.
        • Baricault B.
        • Botton J.
        • Jabagi M.J.
        • Bertrand M.
        • Semenzato L.
        • et al.
        Estimation de l’impact de la vaccination chez les personnes âgées de 75 ans et plus sur le risque de formes graves de Covid-19 en France à partir des données du Système National des Données de Santé (SNDS) – actualisation jusqu’au 20 juillet 2021. Epi-Phare.
        (Available at)
        • UK Health Security Agency
        COVID-19 vaccine surveillance report. Week 51.
        (Available at)
        • Chemaitelly H.
        • Tang P.
        • Hasan M.R.
        • Al Mukdad S.
        • Yassine H.M.
        • Benslimane F.M.
        • et al.
        Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar.
        N Engl J Med. 2021; 385: e83
        • Goldberg Y.
        • Mandel M.
        • Bar-On Y.M.
        • Bodenheimer O.
        • Freedman L.
        • Haas E.J.
        • et al.
        Waning immunity after the BNT162b2 vaccine in Israel.
        N Engl J Med. 2021; 385: e85
        • Rosenberg E.S.
        • Dorabawila V.
        • Easton D.
        • Bauer U.E.
        • Kumar J.
        • Hoen R.
        • et al.
        COVID-19 vaccine effectiveness in New York State.
        N Engl J Med. 2022; 386: 116-127
        • Arbel R.
        • Hammerman A.
        • Sergienko R.
        • Friger M.
        • Peretz A.
        • Netzer D.
        • et al.
        BNT162b2 vaccine booster and mortality due to covid-19.
        N Engl J Med. 2021; 385: 2413-2420
        • Bar-On Y.M.
        • Goldberg Y.
        • Mandel M.
        • Bodenheimer O.
        • Freedman L.
        • Alroy-Preis S.
        • et al.
        Protection against covid-19 by BNT162b2 booster across age groups.
        N Engl J Med. 2021; 385: 2421-2430
        • Barda N.
        • Dagan N.
        • Cohen C.
        • Hernán M.A.
        • Lipsitch M.
        • Kohane I.S.
        • et al.
        Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes. In Israel: an observational study.
        Lancet. 2021; 398: 2093-2100
        • Patalon T.
        • Gazit S.
        • Pitzer V.E.
        • Prunas O.
        • Warren J.L.
        • Weinberger D.M.
        Odds of testing positive for SARS-CoV-2 following receipt of 3 vs 2 doses of the BNT162b2 mRNA vaccine.
        JAMA Intern Med. 2022; 182: 179-184
        • Pozzetto B.
        • Legros V.
        • Djebali S.
        • Barateau V.
        • Guibert N.
        • Villard M.
        • et al.
        Immunogenicity and efficacy of heterologous ChAdOx1-BNT162b2 vaccination.
        Nature. 2021; 600: 701-706
        • Hillus D.
        • Schwarz T.
        • Tober-Lau P.
        • Vanshylla K.
        • Hastor H.
        • Thibeault C.
        • et al.
        Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study.
        Lancet Resp Med. 2021; 9: 1255-1265
        • Barros-Martins J.
        • Hammerschmidt S.I.
        • Cossmann A.
        • Odak I.
        • Stankov M.V.
        • Morillas Ramos G.
        • et al.
        Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination.
        Nat Med. 2021; 27: 1525-1529
        • Schmidt T.
        • Klemis V.
        • Schub D.
        • Mihm J.
        • Hielscher F.
        • Marx S.
        • et al.
        Immunogencity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination.
        Nat Med. 2021; 27: 1530-1535
        • Nordström P.
        • Ballin M.
        • Nordström A.
        Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: a nationwide cohort study.
        Lancet Reg Health Eur. 2021; 11: 100249
        • Liu X.
        • Shaw R.H.
        • Stuart A.S.V.
        • Greenland M.
        • Aley P.K.
        • Andrews N.J.
        • et al.
        Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial.
        Lancet. 2021; 398: 856-869
        • Andrews N.
        • Stowe J.
        • Kirsebom F.
        • Gower C.
        • Ramsay M.
        • Lopez Bernal J.
        Effectiveness of BNT162b2 (Comirnaty, Pfizer-BioNTech) COVID-19 booster vaccine against covid-19 related symptoms in England: test negative case-control study.
        (Available at)
        https://doi.org/10.1101/2021.11.15.21266341
        Date: 2021
        Date accessed: November 15, 2021
        • Munro A.P.S.
        • Janani L.
        • Cornelius V.
        • Aley P.K.
        • Babbage G.
        • Baxter D.
        • et al.
        Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial.
        Lancet. 2021; 398: 2258-2276
        • Atmar R.L.
        • Lyke K.E.
        • Deming M.E.
        • Jackson L.A.
        • Branche A.R.
        • El Sahly H.M.
        • et al.
        Homologous and heterologous Covid-19 booster vaccinations.
        N Engl J Med. 2022; 286: 1046-1057
        • Dagan N.
        • Barda N.
        • Biron-Shental T.
        • Makov-Assif M.
        • Key C.
        • Kohane I.S.
        • et al.
        Effectiveness of the BNT162b2 mRNA COVID-19 vaccine in pregnancy.
        Nat Med. 2021; 27: 1693-1695
        • Wainstock T.
        • Yoles I.
        • Sergienko R.
        • Sheiner E.
        Prenatal COVID-19 vaccination and pregnancy outcomes.
        Vaccine. 2021; 39: 6037-6040
        • Zauche L.H.
        • Wallace B.
        • Smooots A.N.
        • Olson C.K.
        • Oduyebo T.
        • Kim S.Y.
        • et al.
        Receipt of mRNA Covid-19 vaccines and risk of sponstaneous abortion.
        N Engl J Med. 2021; 385: 1533-1535
        • Rottenstreich M.
        • Sela H.Y.
        • Rotem R.
        • Kadish E.
        • Wiener-Well Y.
        • Grisaru-Granovsky S.
        Covid-19 vaccination during the third trimester of pregnancy: rate of vaccination and maternal and neonatal outcomes, a multicentre retrospective cohort study.
        BJOG. 2022; 129: 248-255
        • Goldshtein I.
        • Nevo D.
        • Steinberg D.M.
        • Rotem R.S.
        • Gorfine M.
        • Chodick G.
        • et al.
        Association between BNT162b2 vaccination and incidence of SARS-CoV-2 infection in pregnant women.
        JAMA. 2021; 326: 728-735
        • Beharier O.
        • Mayo R.P.
        • Raz T.
        • Sacks K.N.
        • Schreiber L.
        • Suissa-Cohen Y.
        • et al.
        Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine.
        J Clin Invest. 2021; 131: e150319
        • Nir O.
        • Schwartz A.
        • Toussisa-Cohen S.
        • Leibivitch L.
        • Strauss T.
        • Asraf K.
        • et al.
        Maternal-neonatal transfer of SARS-CoV-2 immunoglobulin G antibodies among parturient women treated with BNT162b2 messenger RNA vaccine during pregnancy.
        Am J Obstet Gynecol MFM. 2021; 4: 100492
        • Collier A.R.Y.
        • McMahan K.
        • Yu J.
        • Tostanoski L.H.
        • Aguayo R.
        • Ansel J.
        • et al.
        Immunogenicity of COVID-19 mRNA vaccines in pregnant and lactating women.
        JAMA. 2021; 325: 2370-2380
        • Whitaker H.
        • Tsang R.
        • Byford R.
        • Andrews N.
        • Sherlock J.
        • Pillai P.S.
        • et al.
        Pfizer-BioNTech and Oxford AstraZeneca COVID-19 vaccine effectiveness and immune response among individuals in clinical risk groups.
        J Infect. 2022; 84: 675-683
        • Embi P.J.
        • Levy M.E.
        • Naleway A.L.
        • Patel P.
        • Gaglani M.
        • Natarajan K.
        • et al.
        Effectiveness of 2-dose vaccination with mRNA COVID-19 vaccines against COVID-19-associated hospitalizations among immunocompromised adults - nine states, January-September 2021.
        MMWR Morb Mortal Wkly Rep. 2021; 70: 1553-1559
        • Liu C.
        • Lee J.
        • Ta C.
        • Soroush A.
        • Rogers J.R.
        • Kim J.H.
        • et al.
        A retrospective analysis of COVID-19 mRNA vaccine breakthrough infections – risk factors and vaccine effectiveness.
        (Available at)
        https://doi.org/10.1101/2021.10.05.21264583
        Date: 2021
        Date accessed: October 7, 2021
        • Bergman P.
        • Blennow O.
        • Hansson L.
        • Mielke S.
        • Nowak P.
        • Chen P.
        • et al.
        Safety and efficacy of the mRNA BNT162b2 vaccine against SARS-CoV-2 in five groups of immunocompromised patients and healthy controls in a prospective open-label clinical trial.
        EBioMedicine. 2021; 74: 103705
        • Shroff R.T.
        • Chalasani P.
        • Wei R.
        • Pennington D.
        • Quirk G.
        • Schoenle M.V.
        • et al.
        Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors.
        Nat Med. 2021; 27: 2002-2011
        • Fenioux C.
        • Teixeira L.
        • Fourati S.
        • Melica G.
        • Lelievre J.D.
        • Gallien S.
        • et al.
        SARS-CoV-2 antibody response to 2 or 3 doses of the BNT162b2 vaccine in patients treated with anticancer agents.
        JAMA Oncol. 2022; 8: 612-617
        • Di Fusco M.
        • Moran M.M.
        • Cane A.
        • Curcio D.
        • Khan F.
        • Malhotra D.
        • et al.
        Evaluation of COVID-19 vaccine breakthrough infections among immunocompromised patients fully vaccinated with BNT162b2.
        J Med Econ. 2021; 24: 1248-1260
        • David S.S.B.
        • Shamir-Stein N.
        • Gez S.B.
        • Lerner U.
        • Rahamim-Cohen D.
        • Zohar A.E.
        Reactogenicity of a third BNT162b2 mRNA COVID-19 vaccine among immunocompromised individuals and seniors - a nationwide survey.
        Clin Immunol. 2021; 232: 108860
        • Dean N.E.
        • Hogan J.W.
        • Schnitzer M.E.
        Covid-19 vaccine effectiveness and the test-negative design.
        N Engl J Med. 2021; 385: 1431-1433
        • Patel M.M.
        • Jackson M.L.
        • Ferdinands J.
        Postlicensure evaluation of COVID-19 vaccines.
        JAMA. 2020; 324: 1939-1940
        • Teerawattananon Y.
        • Anothaisintawee T.
        • Pheerapanyawaranun C.
        • Botwright S.
        • Akksilp K.
        • Sirichumroonwit N.
        • et al.
        A systematic review of methodological approaches for evaluating real-world effectiveness of COVID-19 vaccines: advising resource-constrained settings.
        PLoS One. 2022; 17: e0261930
        • European Centres for Disease Prevention and Control
        Core protocol for ECDC studies of COVID-19 vaccine effectiveness against hospitalisation with Severe Acute Respiratory Infection laboratory-confirmed with SARSCoV-2, version 1.0. Technical report. Stockholm.
        (Available at)
        • WHO
        Regional Office for Europe. Estimating COVID-19 vaccine effectiveness against severe acute respiratory infections (SARI) hospitalisations associated with laboratory-confirmed SARS-CoV-2. An evaluation using the test-negative design. Guidance document. WHO/EURO: 2021-2481-42237-58308.
        (Available at)
        • Cavaleri M.
        • Sweeney F.
        • Gonzalez-Quevedo R.
        • Carr M.
        Shaping EU medicines regulation in the post COVID-19 era, 2021 the post COVID-19 era.
        Lancet Reg Health Eur. 2021; 9: 100192
        • European Medicines Agency
        EMA regulatory science to 2025. Strategic reflection.
        (Available at)
        • US Food and Drug Administration
        Framework for FDA’s Real-World evidence program.
        (Available at)
        https://www.fda.gov/media/120060/download
        Date: 2018
        Date accessed: January 25, 2022
        • US Food and Drug Administration
        Considerations for the use of real-world data and real-world evidence to support regulatory decision-making for drug and biological products. Guidance for industry. Draft guidance.
        (Available at)
        https://www.fda.gov/media/154714/download
        Date: December 2021
        Date accessed: January 25, 2022
        • Flynn R.
        • Plueschke K.
        • Quinten C.
        • Strassmann V.
        • Duijnhoven R.G.
        • Gordillo-Marañón M.
        • et al.
        Marketing authorization applications made to the European medicines agency in 2018–2019: what was the contribution of Real-World Evidence?.
        Clin Pharmacol Ther. 2022; 111: 90-97
        • Purpura C.A.
        • Garry E.M.
        • Honig N.
        • Case A.
        • Rassen J.A.
        The role of real-world evidence in FDA-approved new drug and biologics license applications.
        Clin Pharmacol Ther. 2022; 111: 135-144
        • US Food and Drug Administration
        FDA approves new use of transplant drug based on real-world evidence. Content current as of 16 July 2021.
        (Available at)
        • Dal-Ré R.
        • Porcher R.
        • Rosendaal F.R.
        • Schwarzer-Dau B.
        It is time to include real-world effectiveness data on medicinal product labels.
        Lancet Respir Med. 2022; 10: e28-e29