Abstract
Objectives
Subgroup analyses of clinical trial data can be an important tool for understanding
when treatment effects differ across populations. That said, even effect estimates
from prespecified subgroups in well-conducted trials may not apply to corresponding
subgroups in the source population. While this divergence may simply reflect statistical
imprecision, there has been less discussion of systematic or structural sources of
misleading subgroup estimates.
Study Design and Setting
We use directed acyclic graphs to show how selection bias caused by associations between
effect measure modifiers and trial selection, whether explicit (e.g., eligibility
criteria) or implicit (e.g., self-selection based on race), can result in subgroup
estimates that do not correspond to subgroup effects in the source population. To
demonstrate this point, we provide a hypothetical example illustrating the sorts of
erroneous conclusions that can result, as well as their potential consequences. We
also provide a tool for readers to explore additional cases.
Conclusion
Treating subgroups within a trial essentially as random samples of the corresponding
subgroups in the wider population can be misleading, even when analyses are conducted
rigorously and all findings are internally valid. Researchers should carefully examine
associations between (and consider adjusting for) variables when attempting to identify
heterogeneous treatment effects.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Clinical EpidemiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study.JAMA. 1998; 279: 1615-1622
- Epidemiology by Design: A Causal Approach to the Health Sciences.Oxford University Press, New York2019
- Level of evidence for promising subgroup findings in an overall non-significant trial.Stat Methods Med Res. 2016; 25: 2193-2213
- Subgroup analysis as a source of spurious findings: an illustration using new data on alcohol intake and coronary heart disease.Addiction. 2015; 110: 183-184
- Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.Health Technol Assess. 2001; 5: 1-56
- Interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions.Ann Intern Med. 2011; 154: 680-683
- Target validity and the hierarchy of study designs.Am J Epidemiol. 2019; 188: 438-443
- Causal diagrams for epidemiologic research.Epidemiology. 1999; 10: 37-48
- Disparity of race reporting and representation in clinical trials leading to cancer drug approvals from 2008 to 2018.JAMA Oncol. 2019; : e191870
- Illustrating bias due to conditioning on a collider.Int J Epidemiol. 2010; 39: 417-420
- Four types of effect modification: a classification based on directed acyclic graphs.Epidemiology. 2007; 18: 561-568
- Invited commentary: selection bias without colliders.Am J Epidemiol. 2017; 185: 1048-1050
- Twenty years post-NIH Revitalization Act: enhancing minority participation in clinical trials (EMPaCT): laying the groundwork for improving minority clinical trial accrual: renewing the case for enhancing minority participation in cancer clinical trials.Cancer. 2014; 120: 1091-1096
- Race and ethnicity in trials of antihypertensive therapy to prevent cardiovascular outcomes: a systematic review.Ann Fam Med. 2007; 5: 444-452
- Transportability of trial results using inverse odds of sampling weights.Am J Epidemiol. 2017; 186: 1010-1014
- Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 trial.Am J Epidemiol. 2010; 172: 107-115
- Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness.Eur J Epidemiol. 2015; 30: 1101-1110
- A structural approach to selection bias.Epidemiology. 2004; 15: 615-625
- Considerations when assessing heterogeneity of treatment effect in patient-centered outcomes research.J Clin Epidemiol. 2018; 100: 22-31
- Extending inferences from a randomized trial to a target population.Eur J Epidemiol. 2019; : 1-4
- The relation of collapsibility and confounding to faithfulness and stability.Epidemiology. 2015; 26: 466-472
- Matched designs and causal diagrams.Int J Epidemiol. 2013; 42: 860-869
- Dabigatran versus warfarin in patients with atrial fibrillation.N Engl J Med. 2009; 361: 1139-1151
- Rivaroxaban versus warfarin in nonvalvular atrial fibrillation.N Engl J Med. 2011; 365: 883-891
- Apixaban versus warfarin in patients with atrial fibrillation.N Engl J Med. 2011; 365: 981-992
- Participation in cancer clinical trials: race-, sex-, and age-based disparities.JAMA. 2004; 291: 2720-2726
- Can DAGs clarify effect modification?.Epidemiology. 2007; 18: 569-572
Article info
Publication history
Published online: June 18, 2020
Accepted:
June 16,
2020
Footnotes
Funding: MJF was supported by NIH/NHLBI R01HL118255.
Conflict of interest: The authors have no conflict of interest to disclose.
Conflict of interest: No conflict of interest or competing interests to disclose.
Identification
Copyright
© 2020 Elsevier Inc. All rights reserved.