Series| Volume 118, P124-131, February 2020

Download started.


GRADE guidelines 27: how to calculate absolute effects for time-to-event outcomes in summary of findings tables and Evidence Profiles

Published:November 08, 2019DOI:



      To provide GRADE guidance on how to prepare Summary of Findings tables and Evidence Profiles for time-to-event outcomes with a focus on the calculation of the corresponding absolute effect estimates.

      Study Design and Setting

      This guidance was justified by a research project identifying frequent errors and limitations in the presentation of time-to-event outcomes in the Summary of Findings tables. We developed this guidance through an iterative process that included membership consultation, feedback, presentation, and discussion at meetings of the GRADE Working Group.


      Review authors need to carefully consider the definition of the outcome of interest; although often the event is used as label for the outcome of interest (e.g., death or mortality), the event-free survival (e.g., overall survival) is reported throughout individual studies. Review authors should calculate the absolute effect correctly, either for the event or absence of the event. We also provide examples on how to calculate the absolute effects for events and the absence of events for various baseline or control group risks and time points.


      This article aids in the development of Summary of Findings tables and Evidence Profiles, including time-to-event outcomes, and addresses the most common scenarios when calculating absolute effects in order to provide an accurate interpretation.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Epidemiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Guyatt G.H.
        • Oxman A.D.
        • Schunemann H.J.
        • Tugwell P.
        • Knottnerus A.
        GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology.
        J Clin Epidemiol. 2011; 64: 380-382
        • Schünemann H.J.
        • Vist G.E.
        • Glasziou P.
        • Akl E.
        • Skoetz N.
        • Guyatt G.H.
        Chapter 14: completing summary of findings tables and grading the certainty of evidence.
        in: Higgins J.P.T. Chandler J. Cumston M. Li T. Page M.J. Welch V. Cochrane handbook for systematic reviews of interventions version 6 (updated January 29, 2019). The Cochrane Collaboration, Chichester (UK)2019: 2019 (Available at)
        Date accessed: September 19, 2019
        • Guyatt G.
        • Oxman A.D.
        • Akl E.A.
        • Kunz R.
        • Vist G.
        • Brozek J.
        • et al.
        GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables.
        J Clin Epidemiol. 2011; 64: 383-394
        • Skoetz N.
        • Goldkuhle M.
        • Weigl A.
        • Dwan K.
        • Lebonte V.
        • Dahm P.
        • et al.
        Methodological review showed correct absolute effect size estimates for time-to-event outcomes in less than one-third of cancer-related systematic reviews.
        J Clin Epidemiol. 2019; 108: 1-9
        • Tierney J.F.
        • Stewart L.A.
        • Ghersi D.
        • Burdett S.
        • Sydes M.R.
        Practical methods for incorporating summary time-to-event data into meta-analysis.
        Trials. 2007; 8: 16
        • Carling C.L.L.
        • Kristoffersen D.T.
        • Montori V.M.
        • Herrin J.
        • Schünemann H.J.
        • Treweek S.
        • et al.
        The effect of alternative summary statistics for communicating risk reduction on decisions about taking statins: a randomized trial.
        PLoS Med. 2009; 6: e1000134
        • Altman D.G.
        • Andersen P.K.
        Calculating the number needed to treat for trials where the outcome is time to an event.
        BMJ. 1999; 319: 1492-1495
        • Newcombe R.G.
        Interval estimation for the difference between independent proportions: comparison of eleven methods.
        Stat Med. 1998; 17: 873-890
        • Bender R.
        • Kromp M.
        • Kiefer C.
        • Sturtz S.
        Absolute risks rather than incidence rates should be used to estimate the number needed to treat from time-to-event data.
        J Clin Epidemiol. 2013; 66: 1038-1044
        • Austin P.C.
        Absolute risk reductions and numbers needed to treat can be obtained from adjusted survival models for time-to-event outcomes.
        J Clin Epidemiol. 2010; 63: 46-55
        • Laubender R.P.
        • Bender R.
        A note on calculating asymptotic confidence intervals for the adjusted risk difference and number needed to treat in the Cox regression model.
        Stat Med. 2014; 33: 798-810
        • Laubender R.P.
        • Bender R.
        Estimating adjusted risk difference (RD) and number needed to treat (NNT) measures in the Cox regression model.
        Stat Med. 2010; 29: 851-859
        • Deeks J.
        • Higgins J.P.T.
        • Altman D.
        • on behalf of the Cochrane Statistical Methods Group
        Chapter 9: analysing data and undertaking meta-analyses.
        in: Higgins J.P.T. Churchill R. Chandler J. Cumpston M.S. Cochrane handbook for systematic reviews of interventions version 5.2.0 (updated June 2017). Cochrane, Cochrane2017: 2017
        • Guyatt G.H.
        • Oxman A.D.
        • Santesso N.
        • Helfand M.
        • Vist G.
        • Kunz R.
        • et al.
        GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes.
        J Clin Epidemiol. 2013; 66: 158-172
        • Spencer F.A.
        • Iorio A.
        • You J.
        • Murad M.H.
        • Schunemann H.J.
        • Vandvik P.O.
        • et al.
        Uncertainties in baseline risk estimates and confidence in treatment effects.
        BMJ. 2012; 345: e7401
        • Newcombe R.G.
        Propagating imprecision: combining confidence intervals from independent sources.
        Commun Stat - Theor Methods. 2011; 40: 3154-3180
        • Newcombe R.G.
        • Bender R.
        Implementing GRADE: calculating the risk difference from the baseline risk and the relative risk.
        Evid Based Med. 2014; 19: 6-8
        • Santesso N.
        • Carrasco-Labra A.
        • Langendam M.
        • Brignardello-Petersen R.
        • Mustafa R.A.
        • Heus P.
        • et al.
        Improving GRADE evidence tables part 3: detailed guidance for explanatory footnotes supports creating and understanding GRADE certainty in the evidence judgments.
        J Clin Epidemiol. 2016; 74: 28-39
        • Agarwal A.
        • Johnston B.C.
        • Vernooij R.W.
        • Carrasco-Labra A.
        • Brignardello-Petersen R.
        • Neumann I.
        • et al.
        Authors seldom report the most patient-important outcomes and absolute effect measures in systematic review abstracts.
        J Clin Epidemiol. 2017; 81: 3-12
        • Gigerenzer G.
        • Gaissmaier W.
        • Kurz-Milcke E.
        • Schwartz L.M.
        • Woloshin S.
        Helping Doctors and patients make sense of health statistics.
        Psychol Sci Public Interest. 2007; 8: 53-96
      1. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data.
        Lancet. 2014; 383: 1561-1571
        • Daly L.E.
        Confidence limits made easy: interval estimation using a substitution method.
        Am J Epidemiol. 1998; 147: 783-790
        • Schunemann H.J.
        • Mustafa R.
        • Brozek J.
        • Santesso N.
        • Alonso-Coello P.
        • Guyatt G.
        • et al.
        GRADE Guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health.
        J Clin Epidemiol. 2016; 76: 89-98
        • Veroniki A.A.
        • Bender R.
        • Glasziou P.
        • Straus S.E.
        • Tricco A.C.
        The number needed to treat in pairwise and network meta-analysis and its graphical representation.
        J Clin Epidemiol. 2019; 111: 11-22
        • Smeeth L.
        • Haines A.
        • Ebrahim S.
        Numbers needed to treat derived from meta-analyses--sometimes informative, usually misleading.
        BMJ. 1999; 318: 1548-1551
        • Kleinbaum D.G.
        • Klein M.
        Survival analysis. A self-learning text.
        Springer, New York2012 (Available at)
        Date accessed: September 19, 2019
        • Lacny S.
        • Wilson T.
        • Clement F.
        • Roberts D.J.
        • Faris P.
        • Ghali W.A.
        • et al.
        Kaplan-Meier survival analysis overestimates cumulative incidence of health-related events in competing risk settings: a meta-analysis.
        J Clin Epidemiol. 2018; 93: 25-35
        • Royston P.
        • Parmar M.K.B.
        Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome.
        BMC Med Res Methodol. 2013; 13: 152