Advertisement
Original Article| Volume 79, P70-75, November 2016

Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses

  • Miguel A. Hernán
    Correspondence
    Corresponding author. Tel.: 617-432-0101; fax: 617-566-7805.
    Affiliations
    Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA

    Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02215, USA

    Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, E25-518, Cambridge, MA 02139, USA
    Search for articles by this author
  • Brian C. Sauer
    Affiliations
    Salt Lake City Veterans Affairs Medical Center, Division of Epidemiology, Department of Internal medicine, University of Utah, 500 S Foothill Blvd, Salt Lake City, UT 84149, USA
    Search for articles by this author
  • Sonia Hernández-Díaz
    Affiliations
    Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
    Search for articles by this author
  • Robert Platt
    Affiliations
    Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada

    Research Institute of the McGill University Health Centre, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada

    Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
    Search for articles by this author
  • Ian Shrier
    Affiliations
    Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
    Search for articles by this author

      Abstract

      Many analyses of observational data are attempts to emulate a target trial. The emulation of the target trial may fail when researchers deviate from simple principles that guide the design and analysis of randomized experiments. We review a framework to describe and prevent biases, including immortal time bias, that result from a failure to align start of follow-up, specification of eligibility, and treatment assignment. We review some analytic approaches to avoid these problems in comparative effectiveness or safety research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Epidemiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hernán M.A.
        • Robins J.M.
        Using big data to emulate a target trial when a randomized trial is not available.
        Am J Epidemiol. 2016; 183: 758-764
        • Cochran W.
        Observational studies.
        in: Bancroft T.A. Statistical Papers in Honor of George W. Snedecor. Iowa State University Press, Ames, Iowa1972: 77-90
        • Walker A.M.
        Observation and inference: an introduction to the methods of epidemiology.
        Epidemiology Resources Inc, Newton Lower Falls1991
        • Suissa S.
        Immortal time bias in pharmaco-epidemiology.
        Am J Epidemiol. 2008; 167: 492-499
        • Giobbie-Hurder A.
        • Gelber R.D.
        • Regan M.M.
        Challenges of guarantee-time bias.
        J Clin Oncol. 2013; 31: 2963-2969
        • Little R.J.
        • D'Agostino R.
        • Cohen M.L.
        • Dickersin K.
        • Emerson S.S.
        • Farrar J.T.
        • et al.
        The prevention and treatment of missing data in clinical trials.
        N Engl J Med. 2012; 367: 1355-1360
        • Hernán M.A.
        • Robins J.M.
        Causal inference.
        Chapman & Hall, Boca Raton, Florida2016
        • Hernán M.A.
        Counterpoint: epidemiology to guide decision-making: moving away from practice-free research.
        Am J Epidemiol. 2015; 182: 834-839
        • Ray W.A.
        Evaluating medication effects outside of clinical trials: new-user designs.
        Am J Epidemiol. 2003; 158: 915-920
        • Robins J.M.
        • Hernan M.A.
        • Rotnitzky A.
        Effect modification by time-varying covariates.
        Am J Epidemiol. 2007; 166 (discussion 1003-4): 994-1002
        • Hernán M.A.
        • Hernández-Díaz S.
        • Robins J.M.
        A structural approach to selection bias.
        Epidemiology. 2004; 15: 615-625
        • Gail M.H.
        Does cardiac transplantation prolong life? A reassessment.
        Ann Intern Med. 1972; 76: 815-817
        • Anderson J.R.
        • Cain K.C.
        • Gelber R.D.
        Analysis of survival by tumor response.
        J Clin Oncol. 1983; 1: 710-719
        • Suissa S.
        Immortal time bias in observational studies of drug effects.
        Pharmacoepidemiol Drug Saf. 2007; 16: 241-249
        • Suissa S.
        • Dell'aniello S.
        • Vahey S.
        • Renoux C.
        Time-window bias in case-control studies: statins and lung cancer.
        Epidemiology. 2011; 22: 228-231
        • Hernandez-Diaz S.
        Name of the bias and sex of the angels.
        Epidemiology. 2011; 22: 232-233
        • Hernán M.A.
        • Alonso A.
        • Logan R.
        • Grodstein F.
        • Michels K.B.
        • Willett W.C.
        • et al.
        Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease.
        Epidemiology. 2008; 19: 766-779
        • Danaei G.
        • Rodríguez L.A.
        • Cantero O.F.
        • Logan R.
        • Hernán M.A.
        Observational data for comparative effectiveness research: an emulation of randomised trials of statins and primary prevention of coronary heart disease.
        Stat Methods Med Res. 2013; 22: 70-96
        • Robins J.M.
        A new approach to causal inference in mortality studies with a sustained exposure period—application to the healthy worker survivor effect.
        Math Model. 1986; 7 ([published errata appear in Computers and Mathematics with Applications 1987;14:917-21]): 1393-1512
        • Robins J.M.
        • Finkelstein D.
        Correcting for non-compliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) Log-rank tests.
        Biometrics. 2000; 56: 779-788
        • Robins J.M.
        • Rotnitzky A.
        Recovery of information and adjustment for dependent censoring using surrogate markers.
        in: Jewell N. Dietz K. Farewell V. AIDS Epidemiology – Methodological Issues. Birkhäuser, Boston, MA1992: 297-331
        • Cain L.E.
        • Robins J.M.
        • Lanoy E.
        • Logan R.
        • Costagliola D.
        • Hernán M.A.
        When to start treatment? a systematic approach to the comparison of dynamic regimes using observational data.
        Int J Biostat. 2010; 6 (Article 18)
        • Orellana L.
        • Rotnitzky A.
        • Robins J.M.
        Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part II: proofs of results.
        Int J Biostat. 2010; 6 (Article 9)
        • Orellana L.
        • Rotnitzky A.
        • Robins J.M.
        Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content.
        Int J Biostat. 2010; 6 (Article 8)
        • van der Laan M.J.
        • Petersen M.L.
        Causal effect models for realistic individualized treatment and intention to treat rules.
        Int J Biostat. 2007; 3 (Article 3)
        • Huitfeldt A.
        • Kalager M.
        • Robins J.M.
        • Hoff G.
        • Hernán M.A.
        Methods to estimate the comparative effectiveness of clinical strategies that administer the same intervention at different times.
        Curr Epidemiol Rep. 2015; 2: 149-161