Advertisement
Original Article| Volume 77, P52-59.e1, September 2016

Recurrent event frailty models reduced time-varying and other biases in evaluating transfusion protocols for traumatic hemorrhage

  • Sangbum Choi
    Affiliations
    Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Suite 1100.05, Houston, TX 77030, USA

    Department of Statistics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
    Search for articles by this author
  • Mohammad H. Rahbar
    Correspondence
    Corresponding author. Tel.: 713-500-7901; fax: 713-500-0766.
    Affiliations
    Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Suite 1100.05, Houston, TX 77030, USA

    Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Sciences Center at Houston, 1200 Pressler Street, Houston, TX 77030, USA
    Search for articles by this author
  • Jing Ning
    Affiliations
    Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit Number: 1411, Houston, TX 77030, USA
    Search for articles by this author
  • Deborah J. del Junco
    Affiliations
    Center for Translational Injury Research, Division of Acute Care Surgery, Department of Surgery, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Houston, TX 77030, USA
    Search for articles by this author
  • Elaheh Rahbar
    Affiliations
    Department of Biomedical Engineering, Wake Forest University Health Sciences, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC 27101, USA
    Search for articles by this author
  • Chuan Hong
    Affiliations
    Department of Biostatistics, School of Public Health, The University of Texas Health Sciences Center at Houston, 1200 Pressler Street, Houston, TX 77030, USA
    Search for articles by this author
  • Jin Piao
    Affiliations
    Department of Biostatistics, School of Public Health, The University of Texas Health Sciences Center at Houston, 1200 Pressler Street, Houston, TX 77030, USA
    Search for articles by this author
  • Erin E. Fox
    Affiliations
    Center for Translational Injury Research, Division of Acute Care Surgery, Department of Surgery, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Houston, TX 77030, USA
    Search for articles by this author
  • John B. Holcomb
    Affiliations
    Center for Translational Injury Research, Division of Acute Care Surgery, Department of Surgery, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Houston, TX 77030, USA
    Search for articles by this author

      Abstract

      Objective

      Transfusion research seeks to improve survival for severely injured and hemorrhaging patients using optimal plasma and platelet ratios over red blood cells (RBCs). However, most published studies comparing different ratios are plagued with serious bias and ignore time-varying effects. We applied joint recurrent event frailty models to increase validity and clinical utility.

      Study Design and Setting

      Using the PRospective Observational Multicenter Major Trauma Transfusion study data, our joint random-effects models estimated the association of (1) clinical covariates with transfusion rate intensities and (2) varying plasma:RBC and platelet:RBC ratios with survival over the 24 hours after hospital admission. Along with survival time, baseline patient vital signs, laboratory values, and longitudinal data on types and volumes of transfusions were included.

      Results

      Baseline systolic blood pressure, heart rate, pH, and hemoglobin were significantly associated with RBC transfusion rates. Increased transfusion rates (per hour) of plasma (P = 0.05), platelets (P < 0.001), or RBCs were associated with increased 24-hour mortality. Higher ratios of plasma:RBC (P = 0.107) and platelet:RBC (P < 0.001) were associated with reduced mortality in a time-varying pattern (P < 0.001).

      Conclusions

      The proposed joint analysis of transfusion rates and ratios offers a more valid statistical approach to evaluate survival effects in the presence of informative censoring by early death.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Epidemiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Teixeira P.G.
        • Inaba K.
        • Hadjizacharia P.
        • Brown C.
        • Salim A.
        • Rhee P.
        • et al.
        Preventable or potentially preventable mortality at a mature trauma center.
        J Trauma. 2007; 63: 1338-1346
        • Holcomb J.B.
        • Del Junco D.J.
        • Fox E.E.
        • Wade C.E.
        • Cohen M.J.
        • Schreiber M.A.
        • et al.
        • PROMMTT Study Group
        The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks.
        JAMA Surg. 2013; 148: 127-136
        • Holcomb J.B.
        • Tilley B.C.
        • Baraniuk S.
        • Fox E.E.
        • Wade C.E.
        • Podbielski J.M.
        • et al.
        • PROPPR Study Group
        Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial.
        JAMA. 2015; 313: 471-482
        • Holcomb J.B.
        • Wade C.E.
        • Michalek J.E.
        • Chisholm G.B.
        • Zarzabal L.A.
        • Schreiber M.A.
        • et al.
        Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients.
        Ann Surg. 2008; 248: 447-458
        • Hess J.R.
        • Dutton R.B.
        • Holcomb J.B.
        • Scalea T.M.
        Giving plasma at a 1:1 ratio with red cells in resuscitation: who might benefit?.
        Transfusion. 2008; 48: 1763-1765
        • Zink K.A.
        • Sambasivan C.N.
        • Holcomb J.B.
        • Chisholm G.
        • Schreiber M.A.
        A high ratio of plasma and platelets to packed red blood cells in the first 6 hours of massive transfusion improves outcomes in a large multicenter study.
        Am J Surg. 2009; 197: 565-570
        • Bhangu A.
        • Nepogodiev D.
        • Doughty H.
        • Bowley D.M.
        Meta-analysis of plasma to red blood cell ratios and mortality in massive blood transfusions for trauma.
        Injury. 2013; 44: 1693-1699
        • Hallet J.
        • Lauzier F.
        • Mailloux O.
        • Trottier V.
        • Archambault P.
        • Zarychanski R.
        • et al.
        The use of higher platelet: RBC transfusion ratio in the acute phase of trauma resuscitation: a systematic review.
        Crit Care Med. 2013; 41: 2800-2811
        • del Junco D.J.
        • Fox E.E.
        • Camp E.A.
        • Rahbar M.H.
        • Holcomb J.B.
        Seven deadly sins in trauma outcomes research: an epidemiologic post mortem for major causes of bias.
        J Trauma Acute Care Surg. 2013; 75: S97-S103
        • Del Junco D.J.
        • Bulger E.M.
        • Fox E.E.
        • Holcomb J.B.
        • Brasel K.J.
        • Hoyt D.B.
        • et al.
        Collider bias in trauma comparative effectiveness research: the stratification blues for systematic reviews.
        Injury. 2015; 46: 775-780
        • Snyder C.W.
        • Weinberg J.A.
        • McGwin Jr., G.
        • Melton S.M.
        • George R.L.
        • Reiff D.A.
        • et al.
        The relationship of blood product ratio to mortality: survival benefit or survival bias?.
        J Trauma. 2009; 66: 358-362
        • Fisher L.D.
        • Lin D.Y.
        Time-dependent covariates in the Cox proportional-hazards regression model.
        Annu Rev Public Health. 1999; 20: 145-157
        • Rahbar E.
        • Fox E.E.
        • del Junco D.J.
        • Harvin J.A.
        • Holcomb J.B.
        • Wade C.E.
        • et al.
        • on behalf of the PROMMTT Study Group
        Early resuscitation intensity as a surrogate for bleeding severity and early mortality in the PROMMTT study.
        J Trauma Acute Care Surg. 2013; 75: S16-S23
        • del Junco D.J.
        • Holcomb J.B.
        • Fox E.E.
        • Brasel K.J.
        • Phelan H.A.
        • Bulger E.M.
        • et al.
        • on behalf of the PROMMTT Study Group
        Resuscitate early with plasma and platelets or balance blood products gradually: findings from the PROMMTT study.
        J Trauma Acute Care Surg. 2013; 75: S24-S30
        • Huang C.Y.
        • Wang M.C.
        Joint modeling and estimation for recurrent event processes and failure time data.
        J Am Stat Assoc. 2004; 99: 1153-1165
        • Wang M.C.
        • Qin J.
        • Chiang C.T.
        Analyzing recurrent event data with informative censoring.
        J Am Stat Assoc. 2001; 96: 1057-1065
        • Liu L.
        • Wolfe R.A.
        • Huang X.
        Shared frailty models for recurrent events and a terminal event.
        Biometrics. 2004; 60: 747-756
        • Liu L.
        • Huang X.
        The use of Gaussian quadrature for estimation in frailty proportional hazards models.
        Stat Med. 2008; 27: 2665-2683
        • Zeng D.
        • Lin D.Y.
        Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events.
        Biometrics. 2009; 65: 746-752
        • Zhu L.
        • Sun J.
        • Tong X.
        • Srivastava D.K.
        Regression analysis of multivariate recurrent event data with a dependent terminal event.
        Lifetime Data Anal. 2010; 16: 478-490
        • Ning J.
        • Rahbar M.H.
        • Choi S.
        • Piao J.
        • Hong C.
        • Del Junco D.J.
        • et al.
        Estimating the ratio of multivariate recurrent event rates with application to a blood transfusion study.
        Stat Methods Med Res. 2015; (in press) [Epub ahead of print]
        • Rahbar M.H.
        • del Junco D.J.
        • Huang H.
        • Ning J.
        • Fox E.E.
        • Zhang X.
        • et al.
        • on behalf of the PROMMTT Study Group
        A latent class model for defining severe hemorrhage: experience from the PROMMTT study.
        J Trauma Acute Care Surg. 2013; 75: S82-S88
        • Andersen P.K.
        • Gill R.D.
        Cox's regression model for counting processes: a large sample study.
        Ann Stat. 1982; 10: 1100-1120
        • Prentice R.L.
        • Williams B.J.
        • Peterson A.V.
        On the regression analysis of multivariate failure time data.
        Biometrika. 1981; 68: 373-379
        • Wei L.J.
        • Lin D.Y.
        • Weissfeld L.
        Regression analysis of multivariate incomplete failure time data by modeling marginal distributions.
        J Am Stat Assoc. 1989; 84: 1065-1073
        • Tsiatis A.A.
        • Davidian M.
        Joint modeling of longitudinal and time-to-event data: an overview.
        Stat Sin. 2004; 14: 809-834
        • Schaubel D.
        • Cai J.
        Rate/mean regression for multiple sequence recurrent event data with missing event category.
        Scand J Stat. 2006; 33: 191-207
        • Henderson R.
        • Diggle P.
        • Dobson A.
        Joint modelling of longitudinal measurements and event time data.
        Biostatistics. 2000; 1: 465-480
        • Guo X.
        • Carlin B.P.
        Separate and joint modeling of longitudinal and event time data using standard computer packages.
        Am Stat. 2004; 58: 16-24
        • Liu L.
        • Huang X.
        • O'Quigley J.
        Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data.
        Biometrics. 2008; 64: 950-958
        • Hayden D.
        • Pauler D.K.
        • Schoenfeld D.
        An estimator for treatment comparisons among survivors in randomized trials.
        Biometrics. 2005; 61: 305-310
        • Scharfstein D.O.
        • Rotnitzky A.
        • Robins J.M.
        Adjusting for nonignorable drop-out using semiparametric nonresponse models.
        J Am Stat Assoc. 1999; 94: 1096-1120
        • Chakraborty B.
        Dynamic treatment regimes for managing chronic health conditions: a statistical perspective.
        Am J Public Health. 2011; 101: 40-45
        • Gran J.M.
        • Roysland K.
        • Wolbers M.
        • Didelez V.
        • Sterne J.A.
        • Ledergerber B.
        • et al.
        A sequential Cox approach for estimating the causal effect of treatment in the presence of time-dependent confounding applied to data from the Swiss HIV Cohort Study.
        Stat Med. 2010; 29: 2757-2768
        • Hernan M.A.
        • Lanoy E.
        • Costagliola D.
        • Robins J.M.
        Comparison of dynamic treatment regimes via inverse probability weighting.
        Basic Clin Pharmacol Toxicol. 2006; 98: 237-242
        • Collins S.P.
        • Lindsell C.J.
        • Pang P.S.
        • Storrow A.B.
        • Peacock W.F.
        • Levy P.
        • et al.
        Bayesian adaptive trial design in acute heart failure syndromes: moving beyond the mega trial.
        Am Heart J. 2012; 164: 138-145