Abstract
The performance of a predictive model is overestimated when simply determined on the
sample of subjects that was used to construct the model. Several internal validation
methods are available that aim to provide a more accurate estimate of model performance
in new subjects. We evaluated several variants of split-sample, cross-validation and
bootstrapping methods with a logistic regression model that included eight predictors
for 30-day mortality after an acute myocardial infarction. Random samples with a size
between n = 572 and n = 9165 were drawn from a large data set (GUSTO-I; n = 40,830; 2851 deaths) to reflect modeling in data sets with between 5 and 80 events
per variable. Independent performance was determined on the remaining subjects. Performance
measures included discriminative ability, calibration and overall accuracy. We found
that split-sample analyses gave overly pessimistic estimates of performance, with
large variability. Cross-validation on 10% of the sample had low bias and low variability,
but was not suitable for all performance measures. Internal validity could best be
estimated with bootstrapping, which provided stable estimates with low bias. We conclude
that split-sample validation is inefficient, and recommend bootstrapping for estimation
of internal validity of a predictive logistic regression model.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Clinical EpidemiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Multivariable prognostic models.Stat Med. 1996; 15: 361-387
- Regression, prediction and shrinkage.J R Stat Soc B. 1983; 45: 311-354
- Estimating the error rate of a prediction rule.JASA. 1983; 78: 316-331
- Probabilistic prediction in patient management and clinical trials.Stat Med. 1986; 5: 421-433
- Predictive value of statistical models.Stat Med. 1990; 9: 1303-1325
- Model uncertainty, data mining and statistical inference.J R Stat Soc A. 1995; 158: 419-466
- An introduction to the bootstrap. Monographs on statistics and applied probability. Chapman & Hall, New York1993
- Improvements on cross-validation.JASA. 1997; 92: 548-560
- Data splitting.Am Statistician. 1990; 44: 140-147
- Assessing the generalizability of prognostic information.Ann Intern Med. 1999; 130: 515-524
- Regression modelling strategies for improved prognostic prediction.Stat Med. 1984; 3: 143-152
- A simulation study of the number of events per variable in logistic regression analysis.J Clin Epidemiol. 1996; 49: 1373-1379
- An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction.N Engl J Med. 1993; 329: 673-682
- Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients.Circulation. 1995; 91: 1659-1668
- A comparison of statistical learning methods on the Gusto database.Stat Med. 1998; 17: 2501-2508
- Stepwise selection in small data sets.J Clin Epidemiol. 1999; 52: 935-942
- Prognostic models based on literature and individual patient data in logistic regression analysis.Stat Med. 2000; 19: 141-160
- Prognostic modelling with logistic regression analysis.Stat Med. 2000; 19: 1059-1079
- Predictors of early morbidity and mortality after thrombolytic therapy of acute myocardial infarction. Analyses of patient subgroups in the Thrombolysis in Myocardial Infarction (TIMI) trial, phase II.Circulation. 1992; 85: 1254-1264
- Validation of probabilistic predictions.Med Decis Making. 1993; 13: 49-58
- Two further applications of a model for binary regression.Biometrika. 1958; 45: 562-565
- The covariance decomposition of the probability score and its use in evaluating prognostic estimates.Med Decis Making. 1995; 15: 120-131
- The measurement of performance in probabilistic diagnosis. III. Methods based on continuous functions of the diagnostic probabilities.Methods Inf Med. 1978; 17: 238-246
- A note on the general definition of the coefficient of determination.Biometrika. 1991; 78: 691-692
Harrell FE. Design library. http://lib.stat.cmu.edu/S/Harrell/ or http://hesweb1.med.virginia.edu/biostat/s/Design.html. Accessed 2000.
- Model selection.Biometrics. 1997; 53: 603-618
- Bootstrap investigation of the stability of a Cox regression model.Stat Med. 1989; 8: 771-783
- What do we mean by validating a prognostic model?.Stat Med. 2000; 19: 453-473
- Prognostic models for the probability of achieving an ongoing pregnancy after in-vitro fertilization and the importance of testing their predictive value.Hum Reprod. 1996; 11: 2298-2303
- Differential diagnosis of acute meningitis. An analysis of the predictive value of initial observations.JAMA. 1989; 262: 2700-2707
- Prediction of residual retroperitoneal mass histology after chemotherapy for metastatic nonsemin omatous germ cell tumor.J Clin Oncol. 1995; 13: 1177-1187
- Construction, validation and updating of a prognostic model for kidney graft survival.Stat Med. 1995; 14: 1999-2008
Harrell FE. Comparison of strategies for validating binary logistic regression models. http://hesweb1.med.virginia.edu/biostat/reports/logistic.val.pdf. Accessed 1998.
Article info
Publication history
Accepted:
December 20,
2000
Received in revised form:
October 26,
2000
Received:
June 28,
2000
Identification
Copyright
© 2001 Elsevier Science Inc. Published by Elsevier Inc. All rights reserved.