The PROMIS Physical Function item bank was calibrated to a standardized metric and shown to improve measurement efficiency

      Abstract

      Objective

      To document the development and psychometric evaluation of the Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank and static instruments.

      Study Design and Setting

      The items were evaluated using qualitative and quantitative methods. A total of 16,065 adults answered item subsets (n>2,200/item) on the Internet, with oversampling of the chronically ill. Classical test and item response theory methods were used to evaluate 149 PROMIS PF items plus 10 Short Form-36 and 20 Health Assessment Questionnaire-Disability Index items. A graded response model was used to estimate item parameters, which were normed to a mean of 50 (standard deviation [SD]=10) in a US general population sample.

      Results

      The final bank consists of 124 PROMIS items covering upper, central, and lower extremity functions and instrumental activities of daily living. In simulations, a 10-item computerized adaptive test (CAT) eliminated floor and decreased ceiling effects, achieving higher measurement precision than any comparable length static tool across four SDs of the measurement range. Improved psychometric properties were transferred to the CAT's superior ability to identify differences between age and disease groups.

      Conclusion

      The item bank provides a common metric and can improve the measurement of PF by facilitating the standardization of patient-reported outcome measures and implementation of CATs for more efficient PF assessments over a larger range.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Cella D.
        • Yount S.
        • Rothrock N.
        • Gershon R.
        • Cook K.
        • Reeve B.
        • et al.
        The Patient-Reported Outcomes Measurement Information System (PROMIS): progress of an NIH Roadmap cooperative group during its first two years.
        Med Care. 2007; 45: S3-S11
        • Cella D.
        • Riley W.
        • Stone A.
        • Rothrock N.
        • Reeve B.
        • Yount S.
        • et al.
        The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008.
        J Clin Epidemiol. 2010; 63: 1179-1194
        • van der Linden W.J.
        • Hambleton R.K.
        Handbook of modern item response theory.
        Springer, Berlin, Germany1997
        • Wainer H.
        • Dorans N.J.
        • Eignor D.
        • Flaugher R.
        • Green B.F.
        • Mislevy R.J.
        • et al.
        Computerized adaptive testing: A primer.
        2nd ed. Lawrence Erlbaum Associates, Mahwah, NJ2000
        • Ware Jr., J.E.
        • Bjorner J.B.
        • Kosinski M.
        Practical implications of item response theory and computerized adaptive testing: a brief summary of ongoing studies of widely used headache impact scales.
        Med Care. 2000; 38: II73-II82
        • Rose M.
        • Bjorner J.B.
        • Becker J.
        • Fries J.F.
        • Ware J.E.
        Evaluation of a preliminary physical function item bank supported the expected advantages of the Patient-Reported Outcomes Measurement Information System (PROMIS).
        J Clin Epidemiol. 2008; 61: 17-33
        • Bjorner J.B.
        • Kosinski M.
        • Ware Jr., J.E.
        Calibration of an item pool for assessing the burden of headaches: an application of item response theory to the headache impact test (HITTM).
        Qual Life Res. 2003; 12: 913-933
        • Granger C.V.
        • Hamilton B.B.
        • Linacre J.M.
        • Heinemann A.W.
        • Wright B.D.
        Performance profiles of the functional independence measure.
        Am J Phys Med Rehabil. 1993; 72: 84-89
        • Haley S.M.
        • McHorney C.A.
        • Ware Jr., J.E.
        Evaluation of the MOS SF-36 physical functioning scale (PF-10): I. Unidimensionality and reproducibility of the Rasch item scale.
        J Clin Epidemiol. 1994; 47: 671-684
        • Fisher Jr., W.P.
        • Eubanks R.L.
        • Marier R.L.
        Equating the MOS SF36 and the LSU HSI physical functioning scales.
        J Outcome Meas. 1997; 1: 329-362
        • Raczek A.E.
        • Ware J.E.
        • Bjorner J.B.
        • Gandek B.
        • Haley S.M.
        • Aaronson N.K.
        • et al.
        Comparison of Rasch and summated rating scales constructed from SF-36 physical functioning items in seven countries: results from the IQOLA Project. International Quality of Life Assessment.
        J Clin Epidemiol. 1998; 51: 1203-1214
        • Wolfe F.
        • Michaud K.
        • Pincus T.
        Development and validation of the health assessment questionnaire II: a revised version of the health assessment questionnaire.
        Arthritis Rheum. 2004; 50: 3296-3305
        • Haley S.M.
        • Coster W.J.
        • Andres P.L.
        • Ludlow L.H.
        • Ni P.
        • Bond T.L.
        • et al.
        Activity outcome measurement for postacute care.
        Med Care. 2004; 42: I49-I61
        • Ware Jr., J.E.
        • Gandek B.
        • Sinclair S.J.
        • Bjorner J.B.
        Item response theory and computerized adaptive testing: implications for outcomes measurement in rehabilitation.
        Rehabil Psychol. 2005; 50: 71-78
        • Reeve B.B.
        • Hays R.D.
        • Bjorner J.B.
        • Cook K.F.
        • Crane P.K.
        • Teresi J.A.
        • et al.
        Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS).
        Med Care. 2007; 45: S22-S31
        • Dewalt D.A.
        • Rothrock N.
        • Yount S.
        • Stone A.A.
        Evaluation of item candidates: the PROMIS qualitative item review.
        Med Care. 2007; 45: S12-S21
        • Bruce B.
        • Fries J.F.
        • Ambrosini D.
        • Lingala B.
        • Gandek B.
        • Rose M.
        • et al.
        Better assessment of physical function: item improvement is neglected but essential.
        Arthritis Res Ther. 2009; 11: R191
        • Fries J.F.
        • Spitz P.
        • Kraines R.G.
        • Holman H.R.
        Measurement of patient outcome in arthritis.
        Arthritis Rheum. 1980; 23: 137-145
        • Ware Jr., J.E.
        • Sherbourne C.D.
        The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection.
        Med Care. 1992; 30: 473-483
        • Liu H.
        • Cella D.
        • Gershon R.
        • Shen J.
        • Morales L.S.
        • Riley W.
        • et al.
        Representativeness of the patient-reported outcomes measurement information system Internet panel.
        J Clin Epidemiol. 2010; 63: 1169-1178
        • Hays R.D.
        • Bjorner J.B.
        • Revicki D.A.
        • Spritzer K.L.
        • Cella D.
        Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items.
        Qual Life Res. 2009; 18: 873-880
        • Rothrock N.E.
        • Hays R.D.
        • Spritzer K.
        • Yount S.E.
        • Riley W.
        • Cella D.
        Relative to the general US population, chronic diseases are associated with poorer health-related quality of life as measured by the Patient-Reported Outcomes Measurement Information System (PROMIS).
        J Clin Epidemiol. 2010; 63: 1195-1204
        • Masters G.N.
        • Wright B.D.
        The essential process in a family of measurement models.
        Psychometrika. 1984; 49: 529-544
        • Muraki E.
        A generalized partial credit model.
        in: Linden W.J. Hambleton R.K. Handbook of Modern Item Response Theory. Springer, Berlin, Gemany1997: 153-164
        • Muthén L.K.
        • Muthén B.O.
        Mplus. The comprehensive modeling program for applied researchers. User's guide.
        Muthén & Muthén, Los Angeles, CA1998
        • Nunnally J.
        Psychometric theory.
        2nd ed. MacGraw-Hill, New York, NY1978
        • Reckase M.
        Unifactor latent trait models applied to multifactor tests: results and implications.
        J Educ Stat. 1979; 4: 207-230
        • Fliege H.
        • Becker J.
        • Walter O.B.
        • Bjorner J.B.
        • Klapp B.F.
        • Rose M.
        Development of a computer-adaptive test for depression (D-CAT).
        Qual Life Res. 2005; 14: 2277-2291
        • Stout W.
        Psychometrics: from practice to theory and back: 15 years of nonparametric multidimensional IRT, DIF/test equity, and skills diagnostic assessment.
        Psychometrika. 2002; 67: 485-518
        • Nagelkerke N.J.D.
        Miscellanea. A note on a general definition of the coefficient of determination.
        Biometrika. 1991; 78: 691-692
        • Ramsay J.O.
        TestGraf. A program for the graphical analysis of multiple choice test and questionnaire data.
        McGill University, Montreal, Canada1995
        • Orlando M.
        • Thissen D.
        Likelihood-based item-fit indices for dichotomous item response theory models.
        Appl Psychol Meas. 2000; 24: 50-64
        • Bjorner J.
        • Smith K.
        • Stone C.
        • Sun X.
        IRTFIT: a macro for item fit and local dependence tests and IRT models.
        QualityMetric, Lincoln, RI2007
        • Muraki E.
        Information functions of the generalized partial credit model.
        Appl Psychol Meas. 1993; 17: 351-363
        • Cook K.F.
        • Kallen M.A.
        • Amtmann D.
        Having a fit: impact of number of items and distribution of data on traditional criteria for assessing IRT's unidimensionality assumption.
        Qual Life Res. 2009; 18: 447-460
        • Broderick J.
        • Schneider S.
        • Junghaenel D.
        • Schwartz J.
        • Stone A.
        Validity and reliability of patient-reported outcomes measurement information system (PROMIS) instruments in osteoarthritis.
        Arthritis Care Res (Hoboken). 2013; 65: 1625-1633
        • Martin M.
        • Kosinski M.
        • Bjorner J.B.
        • Ware Jr., J.E.
        • Maclean R.
        • Li T.
        Item response theory methods can improve the measurement of physical function by combining the modified health assessment questionnaire and the SF-36 physical function scale.
        Qual Life Res. 2007; 16: 647-660
        • Hays R.D.
        • Liu H.
        • Spritzer K.
        • Cella D.
        Item response theory analyses of physical functioning items in the medical outcomes study.
        Med Care. 2007; 45: S32-S38
        • Emons W.H.
        • Sijtsma K.
        • Meijer R.R.
        Global, local, and graphical person-fit analysis using person-response functions.
        Psychol Methods. 2005; 10: 101-119
        • Hays R.
        • Spritzer K.
        • Amtmann D.
        • Lai J.
        • Dewitt E.
        • Rothrock N.
        Upper-extremity and mobility subdomains from the Patient-Reported Outcomes Measurement Information System (PROMIS) adult physical functioning bank.
        Arch Phys Med Rehabil. 2013; 94: 2291-2296